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Abstract. We show, by calculating various linear and non-linear relaxation times exactly, 
that the scaling law AY’= A$)-& is valid for the one-dimensional kinetic king model. In 
the two-dimensional case, the critical exponent of the non-linear relaxation time of the 
order parameter is estimated from an eleventh-order high-temperature series expansion. 
The result, A E ) =  2.00*0.04, is in agreement with the scaling prediction. 

1. Introduction 

The dynamics of second-order phase transitions poses many interesting problems 
from both the experimental and the theoretical points of view (Hohenberg and 
Halperin 1977). A remarkable aspect of critical-slowing-down experiments is the 
non-linear relaxation: near the critical point the time evolution becomes so slow that 
in some materials one can examine the details of the relaxation far from equilibrium 
(Collins and Teh 1973, Sat0 and Hirakawa 1977). These experiments provide us with 
new information about non-equilibrium processes, so we can gain insight in a field 
which is still in the initial stages of development (Binder 1976). 

In purely relaxational systems an overall characterisation of the relaxation far from 
equilibrium may be given by the non-linear relaxation time (Suzuki 1971): 

T?) = $(f)/4(0) df, (1) 

where I& is a non-conserved quantity with zero equilibrium average. The first question 
one would like to answer is how T?) relates to the corresponding linear relaxation 
time, i.e. to the decay time of the equilibrium fluctuations 

7:) = (*(t)*(o)>/(*2> dt. (2 ) 

It has been shown that the critical point singularities of T?) and 7:) are different (RBcz 
1975) and the corresponding critical exponents A$“) and A$) are related by (Rgcz 
1976, Fisher and Rdcz 1976) 

A?’ = A:) - @*, (3) 

where PJI is the exponent characterising the scaling of $ with respect to temperature 
(e.g. PJI = P if $ = M is the order parameter and Pa = 1 -a if $ = E  is the energy). 

The scaling law (3) is based on the assumptions that dynamic scaling can be 
extended to non-linear phenomena and that for a quantity $ the extent of the linear 
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regime of relaxation is scaled with the static exponent &. Renormalisation group 
calculations (Bausch and Janssen 1976, Suzuki 1976) have proved the first assumption 
to be correct for the order parameter relaxation (restricted scaling in the terminology 
of Halperin and Hohenberg 1969). The validity of the second assumption, however, 
remains an open question, so by examining (3) one actually investigates how the 
extent of the linear regime of relaxation is scaled, and also whether extended scaling 
applies to non-linear relaxation. 

Up to now the scaling law ( 3 )  has been proved for the dynamical droplet model 
(Kretschmer et a1 1976) and for the spherical limit of the time-dependent Ginzburg- 
Landau model (RBcz aiid TC1 1977). There are also Monte Carlo calculations (Stoll et 
a1 1973, Kretschmer et a1 1976) and high-temperature series expansions (RAC, and 
Collins 1976, Ikeda 1976a, b, White 1976 and unpublished) for the non-linear energy 
and order parameter relaxation times T$’) and T E )  of the kinetic Ising model. 

Our work was motivated by the problems in the latter studies. In the case of the 
two-dimensional kinetic Ising model, both the Monte Carlo work and the high- 
temperature series yield a value for the exponent A$’) of &’) which is smaller than the 
scaling prediction. Furthermore, the high-temperature series are not long enough to 
demonstrate convincingly the small difference between the critical exponents ol 7% 

In order to improve our knowledge about the dynamics of the kinetic Ising model, 
first we examined the energy and order parameter relaxations in the one-dimensional 
case. The one-dimensional Ising model exhibits only a zero-temperature ordering. 
Critical exponents for this transition can nevertheless be defined, since quantities like 
susceptibility, correlation length, etc display power law singularities if they are 
expressed as functions of the natural high-temperature variable 

and 73) (AG- A($) = p = Q). 

v = tanh(J/kBT), (4) 

where J is the spin-spin interaction strength and T is the temperature. In 8 2 we show 
that the zero-temperature singularity of the dynamical quantities can also be charac- 
terised by critical exponents and the scaling law ( 3 )  holds for both the order parameter 
and energy relaxations. The analytical structure of the different relaxation times, 
relevant to the analysis of high-temperature series, is also discussed briefly in 0 2. 

In the more interesting two-dimensional case, we have extended up to eleventh 
order the high-temperature series of 72) (0 3). Analysing the series by Pad6 approxi- 
mant methods, the critical exponent of T E )  is found to be AE;”=2.00*0.04, in 
agreement with the scaling prediction. 

2. Relaxation in the one-dimensional kinetic Ising model 

The one-spin-flip kinetic Ising model (Glauber 1963) is one of the simplest systems 
where non-trivial critical-slowing-down effects can be investigated. The static pro- 
perties of the model are well known and the dynamics is also simple, in the sense that 
it is purely relaxational and there are no conserved quantities. Thus the only compli- 
cation one has to cope with is the critical point divergence of the relaxation times. 

Since the model has been discussed extensively in the literature, it will not be 
described here. An interested reader may consult Glauber’s original paper (Glauber 
1963), where the one-dimensional case is treated in detail. In this section we use 
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Glauber's exact results to establish the validity of ( 3 )  for the one-dimensional kinetic 
Ising model. 

The order parameter relaxation is trivial, since in one dimension the magnetisation 
(order parameter) decays exponentially. This means that both the linear and non- 
linear relaxation times are equal to the decay time calculated by Glauber (1963): 

(5 1 (1) - (nl) = 
7M - 7M ( 1  + v 2 ) / ( 1  -U)' 

where v is given by ( 4 )  and the constant setting the time scale is chosen to be unity. 

accord with the scaling prediction, since in one dimension p = 0 (Fisher 1974). 

towards its equilibrium value v is described by the following sum (Glauber 1963): 

The critical point is at uc = 1 ,  so one can see from (5) that AG= A E ) =  2.  This is in 

The energy relaxation is a bit more complicated. The time evolution of the energy 

where the energy is measured in units of J, vo is the initial value of E, y = 2 v / ( l +  v 2 )  
and 

Qk ( X )  = Ik-1 ( X  ) - Ik+l ( X  1, ( 7 )  
Ik ( x )  being the imaginary-argument Bessel function (Watson 1958). 

initial deviation vo - v and taking the limit of zero initial deviation: 
Now, the equilibrium relaxation function 4:) is found from ( 6 )  by dividing by the 

The non-linear relaxation can be investigated by choosing, e.g., a completely random 
(vo = 0) far from equilibrium initial state. Then the non-linear relaxation function is 
expressed as 

Note that the usual, completely ordered ( u o =  1 )  initial state cannot be used now, 
because then the initial deviation 1 - U  would go to zero when approaching the critical 
point. 

The area under the relaxation curve gives the relaxation time, so the calculation of 
& and 7(En') requires the evaluation of the following integral: 

Using ( l o ) ,  the integrals of (8) and ( 9 )  result in simple series which are summed to 
yield 

l + v 2  
2(1-U ) 

&) = 2 ' - ( 1 - v ) - 2  

and 
l + u 2  

(1 - v)? ?E') = - - 
2(1 -U)  

The result for 7:) has already been calculated by Felderhof and Suzuki (1971).  
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From (11) and (12) we obtain the critical exponents 
A$)=2 and 1 (13) 

which agree again with the scaling prediction since in one dimension the deviation of 
the energy from its critical point value scales like 1 - U, i.e. P E  = 1. 

In connection with Monte Carlo calculations and high-temperature series, the first 
time moment of the relaxation function has been introduced as a new relaxation time 
(Suzuki 1970, Schneider and Stoll 1974) 

The linear and non-linear relaxations can again be distinguished and now the same 
arguments which lead to (3) result in a different scaling law (Ikeda 1977): 

A$‘;) = A$\ - &L/ 2. (15) 
This scaling law can also be verified for the one-dimensional kinetic Ising model. 

The case of order parameter relaxation does not require any calculation, since the 
equalities T E ~  = T , $ ~  = T,$ follow from the exponential relaxation of the magnetisa- 
tion. The calculation of T $ ) ~  and ~ g : )  is carried out similarly to that of T$) and TP), and 
we obtain 

- (1 - 
(1) - ( 1 + U 2)3’2 

2(1- u2)2 
781 - 

and 

Since P E  = 1,  the exponents A21 = 2 and Ag\)= $ satisfy (15). 
The first time moment of the relaxation function has been investigated because of 

its apparent smooth high-temperature series (Ikeda 1977). Expanding (1 l), (12), (16) 
and (17), we find that the ratio estimates of the critical exponents, A& and Ag?, are 
indeed smooth sequences (table l) ,  but in a given order the deviation from the exact 
value is always larger than that of the corresponding A€. So, the results obtained from 

Table 1. Ratio estimates of the critical exponents of the various energy relaxation times in 
the one-dimensional kinetic king model, calculated from the high-temperature expan- 
sions of ( l l ) ,  (12), (16) and (17). Note that the expansion variable is u 2 ,  so this table 
requires knowledge of the high-temperature series up to u l 2 .  

1 3.00 3.50 2 2.50 
2 2.33 2.64 1 1.70 
3 2.20 2.34 1 1.61 
4 2.14 2.31 1 1.58 
5 2 .11 2.23 1 1.56 
6 2.09 2.19 1 1 5 5  

Exact 2 2 1 1.5 
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the high-temperature series of the first time mcment have to be interpreted with 
caution, especially if the series are short. 

Having obtained the different relaxation times exactly, it is worth discussing their 
analytical structure. It might give a clue about higher dimensions, i.e. it might help to 
analyse the high-temperature series in two and three dimensions. 

The energy relaxation does not depend on the sign of the interaction between the 
neighbouring spins. Accordingly, the energy relaxation times are singular at both the 
ferromagnetic (U, = 1) and antiferromagnetic (U: = -1) critical points. On the other 
hand, the magnetisation is not a relevant quantity in an antiferromagnet, so & is 
singular only at vc = 1. 

It is important to note that ~ g ) ~  is non-analytic at U = *i, and all the relaxation 
times vanish at those points. This ‘instantaneous relaxation’ follows from the parti- 
cular form of the spin-flip transition probability used in the kinetic Ising model 
(Glauber 1963): 

where ui is the value of the ith spin. At U = i i  the transition probability is infinite and 
this leads to vanishing relaxation times. It may be expected in general that the 
singularities of the transition probability are reflected in the relaxation times. 

The choice of transition probabilities is restricted only by the detailed balance 
condition. The above discussion shows, however, that one has to be cautious with the 
remaining arbitrariness. If the relaxation time is expanded around some point, then 
the singularity of the transition probabilities should not be nearer to that point than 
the physical singularity of the relaxation time. 

Most frequently the expansion point is U = 0, i.e. the high-temperature series are 
considered. It may be observed from ( 5 ) ,  ( l l ) ,  (12), (16), (17) and (18) that in one 
dimension the physical singularities and the singularities of the transition probabilities 
are on the circle of convergence of the high-temperature series. This leads to quite 
slow convergence of the ratio estimates of the critical exponents (table 1). A similar 
situation arises in two dimensions, as discussed in the next section. 

3. Non-linear order parameter relaxation in two dimensions 

The exact solution of the kinetic king model is available only in one dimension. An 
effective method of estimating its dynamic critical exponents in higher dimensions is 
the high-temperature series expansion (Suzuki et a1 1969). High-temperature series 
have been derived for both the linear (Yahata and Suzuki 1969, Yahata 1971) and 
non-linear (Suzuki 1971, RBcz and Collins 1976, Ikeda 1976a, White 1976) relax- 
ation times of the order in two and three dimensions. Short series have also been 
given for the energy relaxation times in two dimensions (Yahata 1971, Ikeda 1976b, 
White 1976 unpublished). 

In this section the non-linear relaxation time TE) of the order is investigated in the 
square-lattice kinetic Ising model. This case is interesting because a relatively long 
(twelfth-order) series is available for the linear relaxation time ~2 (Yahata 1971) and 
its Pad6 analysis yields a very accurate value for the critical exponent Afi= 
2.125*0*01 (RBcz and Collins 1976). Thus A E )  remains the only unknown quantity 
in the scaling relation (3). Furthermore, it might be expected that, if the fluctuations 
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result in a deviation from (3), then the lzrgest deviation can be observed in two 
dimensions because the kinetic slowing down is the largest in this case. 

The critical exponent A!$) has been previously estimated from a ninth-order 
high-temperature series (Rhcz and Collins 1976). The large uncertainty of the result 
(AZ)= 1.95*0.15) and the small value of f i  = &  however, excluded the possibility of 
quantitative comparison with the scaling law (3). In order to determine A'"') more 
accurately, we have extended the high-temperature series of TZ)  up to eleventh order. 
Some details of the simple but quite voluminous computation may he found in the 
appendix. The final result is written as 

148 416 10444 433264U,+3515524 , 
1' 

1215 T ! $ ) =  1 + 4 ~ + 1 6 ~ ~ + - - - ~ ~ + - ~ ~ + -  U +- 
3 3 27 405 

705 704 768 U 8  + 584 670 852 U 9  + 54 887.72 1 1  U 10 + 
91 125 76 545 

+143 811*265!~"+ .  . . . (19) 

The critical value of U is known (U, = J2- l) ,  so applying the ratio method to (19), 
we find a sequence of unbiased estimates for the critical exponent of TE) :  
A!$'= 1*657,2*314,1*831,1*657,  1.777, 1.873, 1.842,1*869, 1.966, 

1,982, 1 .938 . .  , . (20) 

This sequence does not give AE) accurately enough to say anything definite about 
the scaling prediction A!$'=2.0. The reason for the slow convergence of the ratio 
estimates may be found in the transition probabilities: 

where the sum is over the four nearest neighbours of ( ~ i .  When all the neighbouring 
spins are in the same direction, the second term in (21) becomes proportional to 
tanh (4JIkBT). Expressing tanh(4J/kBT) in terms of U = tanh(J/kBT), one can 
easily see that it is singular at U = *i ( f i -  1) = *ioc. Consequently, the relaxation time 
has additional singularities following from the particular form of the transition pro- 
babilities (see discussion in the previous section). These singularities are on the circle 
of convergence and they make the convergence of ratio estimates slow. 

White (1976) introduced transition prdbabilities which satisfy the detailed balance 
condition and are free of the above problem. It is a promising way of improving the 
high-temperature series. Unfortunately, his transition probabilities make the compu- 
tation more involved, thus one cannot go easily to higher orders in the expansion. 

Since the ratio analysis does not yield the desirable accuracy, we turn to the more 
powerful Pad6 approximant methods (Hunter and Baker 1973). The most reliable 
value of AlC;" is obtained by taking into account the correlation between the Pad6 
estimates of the critical point and critical exponent (Meijer and Farrel 1975). The 
importance of these correlations may be seen from table 2, where the estimates of A!$) 
and vC, resulting from the Pad6 approximants to d In TZ)/dU, are displayed. One can 
observe that the higher the critical point estimate, the higher the exponent estimate, 
Since almost all critical point estimates are lower than the exact value, this means that 
a conventional acalysis of the Pade table underestimates A Z ) .  



Non -linear critical relaxation in kinetic Ising model 581 

In order to take into account the correlations, we plot the exponent estimates 
against the critical point estimates (figure 1). Straight line extrapolation of the 
resulting smooth function gives at the exact critical point 

(22 )  A(n1) - M - 2.00 * 0.04, 

Table 2. PadC-approximant estimates of the critical point U, = 0.4142 (upper numbers) 
and the critical exponent A$!) (lower numbers) of the non-linear relaxation time of the 
order in the square-lattice kinetic king model. Asterisks indicate the presence of poles 
which are in the immediate vicinity of U = 0 or at a distance less than u,/2 from the 
physical singularity. 

3 4 5 6 7 

3 0.3999 0.3966 0.3907 0.3948 0.4024 0.4097 
1.516 1.465 1359 1.447 __  1.657 1909 

4 0.3970 0.4036 0’3931 0‘3863 - 
1473 1*543* 1407 1.300* 

5 0,3908 0.3940 0,3958 0,4098 
1365 1425 1462 1861 

6 0.3997 0.4034 0,3835 
1.570 1.670 1357* 

7 0.4029 0.3989 
1670 __ 1.550* 

8 0,4159 
.___ 2.363* 

“C 

Figure 1. Correlation between the Pad6 estimates of the critical point U, and the critical 
exponent A$!) calculated by retaining 10 (full squares), 9 (full circles), 8 (open triangles), 7 
(open circles) and 6 (open squares) terms in the high-temperature series of d In TE)/du. 
We left out the estimates in which there is a pole in the immediate vicinity of U = 0 or at a 
distance less than u,/2 from the physical singularity. The exact value of uC is denoted by 
UP. 
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which is in excellent agreement with the scaling prediction A!$= 2.0. Of course, it 
would be desirable to reduce further the error bar in (22). The calculation of new 
terms in the high-temperature series, however, would take considerable effort and 
computer time, so probably it is more promising to approach this problem by renor- 
malisation group methods. 

Z Csipes and Z R6cz 

4. Final remarks 

The results of the previous two sections and the set of critical exponents for the 
three-dimensional kinetic Ising model (A;= 1.32 i o - 0 3  (Rhcz and Collins 1976), 
A E ) =  1.05*0.05 (Ikeda 1976a), @ =0.312st0.001 (Essam and Fisher 1963)), 
demonstrate convincingly that the scaling law (3) holds for the order parameter 
relaxation. 

As to the energy relaxation, it is shown in 9 2 that, in the one-dimensional kinetic 
Ising model, (3) is valid for the energy relaxation too. For the two-dimensional case 
the scaling prediction is At1’= AE)- 1 f a  = 1.13 *0.01. The high-temperature series 
for 7E1’ (White 1976 unpublished, Ikeda 1976b) are so short (5-6 terms) that the 
somewhat small value of AE’), following from their ratio analysis, does not have to be 
taken seriously. At first sight the Monte Carlo calculation of Kretschmer er a1 (1976) 
also gives a number A$”=0.9*0*1, which is in accord with the high-temperature 
series. One must remember, however, that the Monte Carlo studies (Stoll et a1 1973) 
seem to underestimate all the dynamic exponents (e.g. AE)==l.85 instead of Ag)= 
2.13). Thus the Monte Carlo calculations are in agreement with (3) if it is assumed 
that they underestimate both Ag and A$’) by the same amount. 

So our final conclusion is that the scaling law (3) holds in every purely relaxational 
system which has been investigated so far. The existing small discrepancies can be 
attributed to the uncertainties in the values of the critical exponents. 
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Appendix 

Suzuki (197 1) has described in detail how to perform high-temperature series expan- 
sion for TE) in the case of a square lattice. The work is essentially a graph counting 
exercise. It can be put on a computer and the series can be calculated up to an order 
limited only by the available computer time. 

The results of our eleventh-order calculation are given below. Denoting the 
contributions of different classes of graphs by (for notation and details see RBcz and 
Collins 1976): 

P2.  . .6“ = (1 - 4a)(X%L. . . x&, (23) 

the contributions, which are new compared to the ninth-order results (RBcz and 
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Collins 1976), can be written as follows 

6'= 39 647.575 675 a7c  

6' = 163 572.723 655 a 8 c  

64-4 ' -  c - 1447.870 348 a 4 c 2  

6'26' = 1 505.207 659 a 4 c 2  

62c*'62 = 1 283.572 763 a4c2 

6 ' ~ ^ ' 6 ~  = 1 125.132 291 a 4 c 2  

t164 = 1 068.369 822 a 4 c 2  

= 6 332.451 703 a 5 c 2  

6't16' = 6 508.644 918 a 5 c 2  

63t'62= 5 691.196 722 asc' 

62~ '63  = 5 159,125 415 a 5 c 2  

6'~* '6~ = 4 448,931 180 a 5 c 2  

c^'P = 4 312.201 189 a 5 c 2  

6' t2  = 58.710 494 ac3 

2'6'2'= 53,651 640 ac3 

2'6' = 50.093 827 ac' 

6 2 - 4 2  c - - 262.409 255 a 2 c 3  

6'26'2' = 240.313 577 a 2 c 3  

c*162c '̂ = 221.159 979 a 2 c 3  

6'2'6' = 219.271 617 a 2 c 3  

~'6'c*'6' = 215.345 514 a 2 c 3  

t 262  = 192.075 250 a 2 c 3  

583 

(24) 

where a and c have the following high-temperature expansions: 

a = v - 3 v 3 + 1 5 v S - 8 5 v 7 + 4 9 3 v 9 - 2 8 7 1 v " .  . . (29) 

~ = - 2 ~ ' + 1 4 ~ ~ - 8 4 ~ ~ + 4 9 2 ~ ~ - 2 8 7 0 ~ ~ ' .  . . . (30) 
Substituting (29) and (30) in (24)-(28) and expanding the terms obtained in the 

ninth-order calculation up to eleventh order, we arrive at the expansion of TZ) (19). 
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